Boundedness and compactness of an integral-type operator from Bloch-type spaces with normal weights to F(p, q, s) space

نویسنده

  • Stevo Stevic
چکیده

The boundedness and compactness of the integral-type operator Luðf ÞðzÞ 1⁄4 Z 1 0 Rf ðuðtzÞÞgðtzÞ dt t ; z 2 B; where g is a holomorphic function on the open unit ball B in C such that g(0) = 0 and u is a holomorphic self-map of B, from Bloch-type spaces Bl and Bl;0, where l is a normal weight, to F(p,q,s) space on B are characterized, solving a recent open problem. 2011 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Products of Composition and Differentiation Operators from QK(p,q) Spaces to Bloch-Type Spaces

and Applied Analysis 3 Let D be the differentiation operator on H D , that is, Df z f ′ z . For f ∈ H D , the products of composition and differentiation operators DCφ and CφD are defined, respectively, by DCφ ( f ) ( f ◦ φ)′ f ′(φ) φ′, CφD ( f ) f ′ ( φ ) , f ∈ H D . 1.8 The boundedness and compactness of DCφ on the Hardy space were investigated by Hibschweiler and Portnoy in 11 and by Ohno in...

متن کامل

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

Zygmund-Type Spaces on the Unit Ball

Let H B denote the space of all holomorphic functions on the unit ball B ⊂ C. This paper investigates the following integral-type operator with symbol g ∈ H B , Tgf z ∫1 0 f tz Rg tz dt/t, f ∈ H B , z ∈ B, whereRg z ∑n j 1 zj∂g/∂zj z is the radial derivative of g. We characterize the boundedness and compactness of the integral-type operators Tg from general function spaces F p, q, s to Zygmund-...

متن کامل

Volterra Composition Operators from F ( p , q , s ) Spaces to Bloch - type Spaces

Let H(B) denote the space of all holomorphic functions on the unit ball B ⊂ Cn. Let φ be a holomorphic self-map of B and g ∈ H(B). In this paper, we investigate the boundedness and compactness of the Volterra composition operator

متن کامل

Generalized Composition Operator from Bloch–type Spaces to Mixed–norm Space on the Unit Ball

Let H(B) be the space of all holomorphic functions on the unit ball B in CN , and S(B) the collection of all holomorphic self-maps of B . Let φ ∈ S(B) and g ∈ H(B) with g(0) = 0 , the generalized composition operator is defined by C φ ( f )(z) = ∫ 1 0 R f (φ(tz))g(tz) dt t , Here, we characterize the boundedness and compactness of the generalized composition operator acting from Bloch-type spac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2012